Calendar

Mar
8
gio
Ileana Chinnici (INAF – Osservatorio Astronomico di Palermo) Donne e scienza: un binomio possibile? La scienza al femminile @ Osservatorio Astronomico di Palermo
Mar 8@15:30–17:00

Partendo da analisi di tipo sociologico e statistico del XX secolo, saranno discusse le difficoltà incontrate dalle donne nella carriera scientifica e le potenzialità del loro contributo allo sviluppo della scienza.

Mar
9
ven
Seminario Tesi di Dottorato: Esther Gonzalez Alvarez
Mar 9@10:30–12:00
Planets around low-mass stars and stellar activity correction
Mar
12
lun
Seminario Tesi di Dottorato: Daniele Locci
Mar 12@11:30–13:00
THE INTERACTION OF THE STELLAR HIGH ENERGY RADIATION WITH THE CIRCUMSTELLAR MEDIUM
Mar
22
gio
ASTROSMART – Truden
Mar 22@9:00–12:00
Mar
23
ven
ASTROSMART – Truden
Mar 23@10:00–12:00
Mar
28
mer
ASTROSMART – Truden
Mar 28@11:00–13:00
Mar
29
gio
ASTROSMART – Truden
Mar 29@9:00–12:00
Mar
30
ven
ASTROSMART – Truden
Mar 30@9:00–11:00
Apr
3
mar
Astrosmart – Masiero
Apr 3 giorno intero
Apr
5
gio
Retrieving exoplanetary atmospheres with artificial intelligence. Tiziano Zingales, INAF-OAPA
Apr 5@15:00–17:30
ABSTRACT: Atmospheric retrievals on exoplanets involve usually computationally intensive Bayesian methods. The choice of the fitting parameters bounds are often leaded by physical constraints and the user experience. In these paper we introduce an alternative method that can help to automatically define the boundary conditions of the model and set a reliable parameters space for a Bayesian analysis. We show how a new generation of neural networks, a Generative Adversarial Network (GAN), can learn how to reproduce a transmission spectrum and understand how it depends on the planetary physical parameters.