The supernova remnant SN 1987A observed by the James Webb Space Telescope

The James Webb Space Telescope, the flagship observatory of NASA/ESA/CSA, has turned its gaze toward the supernova remnant SN 1987A, revealing its structure with an unprecedented level of detail.   About 400 years after Kepler supernova, which exploded in 1604, the skies of the southern hemisphere witnessed another supernova relatively close to us. This was SN 1987A, which exploded on

» Read more

X-rays from SN1987A: shocks, circumstellar clouds and ionised oxygen described in two recent publications

Analysis of X-ray observations of the SN1987A supernova remnant, obtained by the XMM-Newton satellite, provides new insights into the interaction between the supernova shock wave and the circumstellar material, as well as the oxygen abundance in the remnant.   The SN1987A supernova remnant is undoubtedly one of the most iconic objects for studying supernovae, their remnants, and the final stages

» Read more

The acceleration of cosmic rays in supernova remnants depends on the interaction with the surrounding medium. The study: “Time evolution of the synchrotron X-ray emission in Kepler’s SNR: the effects of turbulence and shock velocity” of V. Sapienza (UNIPA/INAF-OAPA) appeared on ApJ

The role of supernova remnants (expanding clouds produced by supernovae) in the acceleration of cosmic rays (high-energy particles present in various astrophysical environments) has been known since 1995. The discovery, made by astronomers from Kyoto University, was made possible by identifying the presence of non-thermal X-ray emission in the supernova remnant SN 1006. X-rays are a type of high-energy radiation

» Read more

Superfast fragments and X-ray emission in the supernova remnant SN 1006. The study: “Indication of a fast ejecta fragment in the atomic cloud interacting with the southwestern limb of SN 1006” of R. Giuffrida (UNIPA/INAF) appeared on A&A

Supernova remnants, which are nebulae produced by explosion of supernovae and undergoing rapid expansion, typically serve as intense sources of high-energy radiation, particularly in the form of X-ray emissions. This radiation can be of two different types: thermal and non-thermal. Thermal radiation is emitted by dense material and is contingent upon the temperature of the emitting gas. To emit X-rays,

» Read more

The magnetic field in SN1987A revealed from radio observations. The study: “Polarized radio emission unveils the structure of the pre-supernova circumstellar magnetic field and the radio emission in SN1987A” of O. Petruk (INAF-OAPA) appeared on A&A

Without any doubts, the supernova remnants SN1987A is the one that taught us more about this class of objects and supernova exposions. Produced by a supernova exploded in the Large Magellanic Cloud on February 23rd 1987, this is the only case in which we have observations of the progenitor, of the supernova explosion, and in which we follow the development

» Read more

The properties of the reverse shock in Cas A reveal properties of the progenitor. The paper: “Evidence for past interaction with an asymmetric circumstellar shell in the young SNR Cassiopeia A” of S. Orlando (INAF – OAPA) recently appeared on A&A

Supernova remnants (expanding clouds produced by the explosion of massive stars) are fascinating objects. Their study, in fact, can unveil the physical processes working during supernova explosions and even the properties of the stellar progenitors. To these aims, of particular importance is the analysis of the physical and chemical properties of the ejecta (which are the fragments of the dying

» Read more

Supernova remnants as particle accelerators. The study: “The supernova remnant SN 1006 as a Galactic particle accelerator” of R. Giuffrida (UniPA/INAF-OAPA) recently appeared on Nature Communication

Our planet is constantly bombarded by energetic particles (mainly protons) called “cosmic rays“. The study of cosmic rays is a leading science topic given its importance in several fields, such as the study of the effects on instrumentation and astronauts in space, where the natural protection against these particles provided by the magnetic field of Earth is low or null.

» Read more

Jets launched during supernova explosions. The study: “X-ray emitting structures in the Vela SNR: ejecta anisotropies and progenitor stellar wind residuals” of V. Sapienza (UNIPA/OAPA) recently appeared on A&A

Supernova remnants are clouds in rapid expansion formed by supernova explosions. Typically, these remnants are very inhomogeneous. These inhomogeneity is the result of the interaction between the expanding remnant and the surrounding material, and, in particular when they are generated by core-collapse supernova explosions (which are the supernova triggered by the gravitational collapse of the cores of massive stars), also to anisotropies formed

» Read more

The interaction between expanding SNR and surrounding clouds. The study: “Modeling the mixed-morphology supernova remnant IC 443. Origin of its complex morphology and X-ray emission” of S. Ustamujic (INAF-OAPA) accepted on A&A

Supernova remnants are clouds in rapid expansion produced by supernova explosions. They are often characterized by a complex morphology, resulting from the interaction between the expanding remnants and surrounding clouds. Supernova remnants also emit radiation on a wide band of the electromagnetic spectrum. This is due to the variety of phenomena occurring in these objects, and because of the different

» Read more

The morphology of the oxygen-rich supernova remnant N132D. The study: “Three-dimensional Kinematic Reconstruction of the Optically Emitting, High-velocity, Oxygen-rich Ejecta of Supernova Remnant N132D” of C. J. Law (CfA) recently appeared on ApJ

Supernove explosions are repeatedly observed in distant galaxies, which lie at such large distances that it is impossible for us to resolve the geometry of the ejected material and its interaction with the surrounding interstellar and circumstellar clouds. With the only exception of SN 1978A, in the Milky Way and in the nearby galaxies (namely the Magellanic Clouds), we did

» Read more
1 2