Different regimes of particle acceleration in supernova remnants. The study: “A Spatially Resolved Study of Hard X-Ray Emission in Kepler’s Supernova Remnant: Indications of Different Regimes of Particle Acceleration” of V. Sapienza (UNIPA/OAPA) appeared on ApJ

Cosmic rays are high-energy charged particles which continuously hit our planet. These particles are accelerated up to such high velocities in different astronomical environments, among which supernova remnants seems to be particularly important. These objects are nebulae in rapid expansion generated by the explosions of very massive stars. In supernova remnants, particle acceleration seems to occurr along the expanding shock

» Read more

Supernova remnants as particle accelerators. The study: “The supernova remnant SN 1006 as a Galactic particle accelerator” of R. Giuffrida (UniPA/INAF-OAPA) recently appeared on Nature Communication

Our planet is constantly bombarded by energetic particles (mainly protons) called “cosmic rays“. The study of cosmic rays is a leading science topic given its importance in several fields, such as the study of the effects on instrumentation and astronauts in space, where the natural protection against these particles provided by the magnetic field of Earth is low or null.

» Read more

A laboratory experiment to test particle acceleration in astrophysical environments. The study: “Laboratory evidence for proton energization by collisionless shock surfing” of W. Yao and J. Fuchs (École Polytechnique, Sorbonne Université) recently appeared on Nature Physics

Energetic particles, called “cosmic rays”, constantly rain down on our planet. Thanks to several years of theoretical studies and observations, we know that these particles can be accelerated by shocks propagating in certain astrophysical environments. The classical example of such environment are the supernovae remnants, which are expanding clouds created by supernova explosions, which are often interacting with surrounding material.

» Read more

Modelli magnetoidrodinamici di interazione tra resti di supernovae e nubi. Pubblicato su MNRAS “Post-adiabatic supernova remnants in an interstellar magnetic field: oblique shocks and non-uniform environment” di O. Petruk (Institute for Applied Problems in Mechanics and Mathematics – Ucraina)

di Mario Giuseppe Guarcello    ( segui mguarce)     I resti di supernova, ossia uno dei due prodotti di un’esplosione di supernova assieme all’oggetto compatto formato dal nucleo della stella esplosa, sono ritenuti i principali responsabili della produzione di raggi cosmici, che vengono accelerati fino ad energie di 3×1015 eV. L’accelerazione di raggi cosmici caratterizza tutta l’evoluzione dei resti di supernova,

» Read more