A laboratory experiment to test particle acceleration in astrophysical environments. The study: “Laboratory evidence for proton energization by collisionless shock surfing” of W. Yao and J. Fuchs (École Polytechnique, Sorbonne Université) recently appeared on Nature Physics

Energetic particles, called “cosmic rays”, constantly rain down on our planet. Thanks to several years of theoretical studies and observations, we know that these particles can be accelerated by shocks propagating in certain astrophysical environments. The classical example of such environment are the supernovae remnants, which are expanding clouds created by supernova explosions, which are often interacting with surrounding material.

» Read more

Shock e riscaldamento degli ioni in ambienti astrofisici. Pubblicato su Nature Astronomy lo studio “Collisionless shock heating of heavy ions in SN 1987A” di M. Miceli (UNIPA/OAPA)

Gli shock sono onde d’urto che viaggiano a velocità supersonica e sono molto importanti in astrofisica perché vengono osservati su diverse scale spaziali ed in diversi contesti, dal nostro “piccolo” sistema solare, fino a scale extragalattiche e cosmologiche. Gli shock astrofisici differiscono da quelli osservabili sulla Terra perché si manifestano in condizioni estreme, non riproducibili sul nostro pianeta.  Mentre nell’atmosfera

» Read more

Recently published on ApJ the study “Investigating the Structure of Vela X” of P. Slane (CfA) on the morphology of the Vela supernova remnant

What remains after a supernova explosion, which is among the most energetic phenomena in the Universe, is an expanding cloud interacting with the surrounding interstellar medium (the “supernova remnants”) and a compact object produced by the contraction of the nucleus of the progenitor star. Given its proximity to the Sun (“only” 945 light years), the Vela supernova remnant is one

» Read more