Simulated the XRISM observations of the iconic supernova remnant SN1987 A. The study: “Probing Shocked Ejecta in SN 1987A: A novel diagnostic approach using XRISM−Resolve” of V. Sapienza (UNIPA/OAPA) accepted on ApJL

SN1987 A is one of the most significant objects for studying supernova explosions and their remnants. This is because it is the only core-collapse supernova that has occurred relatively close to us (approximately 170000 light-years away, in the Large Magellanic Cloud) in the modern epoch. Therefore, it is the sole object of this type for which we have telescope observations

» Read more

γ-ray emission from the supernova remnants in the Large Magellanic Cloud. The paper: “High-energy γ-ray detection of supernova remnants in the Large Magellanic Cloud” of R. Campana (INAF – OAS) recently appeared on MNRAS

Supernova remnants are expanding nebulae produced by the explosion of high-mass stars. They are of great interest for understanding various physical processes and the final evolutionary stages of massive stars. Observations of supernova remnants in gamma rays are particularly important as they shed light on high-energy processes, such as the acceleration of cosmic rays (charged particles at very high energies).

» Read more

Different regimes of particle acceleration in supernova remnants. The study: “A Spatially Resolved Study of Hard X-Ray Emission in Kepler’s Supernova Remnant: Indications of Different Regimes of Particle Acceleration” of V. Sapienza (UNIPA/OAPA) appeared on ApJ

Cosmic rays are high-energy charged particles which continuously hit our planet. These particles are accelerated up to such high velocities in different astronomical environments, among which supernova remnants seems to be particularly important. These objects are nebulae in rapid expansion generated by the explosions of very massive stars. In supernova remnants, particle acceleration seems to occurr along the expanding shock

» Read more

Supernova explosions can trigger star formation events. The study: “Negative and positive feedback from a supernova remnant with SHREC: a detailed study of the shocked gas in IC443” of G. Cosentino (Chalmers University of Technology) recently appeared on MNRAS

A supernova is the final act of the evolution of a massive star. These spectacular explosions are among the most energetic events we observe in the Universe, and they can seriously impact the surrounding environment. In particular, during the expansions of the supernova remnants, which are the expanding clouds produced by supernova explosions, the process of star formation in the

» Read more

Supernova explosions produced by LBV stars. The study: “Modeling the remnants of core-collapse supernovae from luminous blue variable stars” of S. Ustamujic (INAF-OAPA) recently appeared on Astronomy & Astrophysics

LBV (Luminous Blue Variable) stars are massive and unstable stars characterized by large mass-lost due to intense stellar winds and aperiodic bursts. Due to their instability, LBV stars are also variable, with quasi-periodic oscillations of their luminosity of the order of 0.5-2 magnitudes. Typical examples of this class of stars are: the supergiant S Doradus in the Large Magellanic Clouds,

» Read more

The role of the magnetic field during the evolution of supernova remnants i. The study: “Magneto-hydrodynamic simulations of young supernova remnants and their energy-conversion phase” of O. Petruk (IAPMM NASU) recently appeared on MNRAS

Supernova explosions are sorted into two categories: The thermonuclear explosions triggered by white dwarfs in close binary systems (type Ia) and those triggered by the gravitational collapse of the core of massive stars (type Ib/c and II). Because of the paucity of known supernova remnants younger than 1000 years, astronomers developed several models describing the evolution of supernova remnants to

» Read more

The interaction between expanding SNR and surrounding clouds. The study: “Modeling the mixed-morphology supernova remnant IC 443. Origin of its complex morphology and X-ray emission” of S. Ustamujic (INAF-OAPA) accepted on A&A

Supernova remnants are clouds in rapid expansion produced by supernova explosions. They are often characterized by a complex morphology, resulting from the interaction between the expanding remnants and surrounding clouds. Supernova remnants also emit radiation on a wide band of the electromagnetic spectrum. This is due to the variety of phenomena occurring in these objects, and because of the different

» Read more

MHD simulations connecting supernova explosions and SNR. The study: “Three-dimensional modeling from the onset of the SN to the full-fledged SNR. Role of an initial ejecta anisotropy on matter mixing” of A. Tutone (UNIPA/INAF-OAPA/INAF-IASF) recently appeared on A&A

Supernova explosions, occurring and the end of the life of massive stars, are ruled by a complex physics, and they can not be described by a simple spherically symmetric geometry. The rarity of these events make even more difficult to understand the physical processes involved during the explosions. For instance, on average only one supernova explodes in our Galaxy every

» Read more

31 years of evolution of a supernova remnant. The study: “3D MHD modeling of the expanding remnant of SN 1987A. Role of magnetic field and non-thermal radio emission” of S. Orlando (INAF-OAPA) recently published by A&A

During the 1987 February 23rd night, astronomers observed the explosion of a supernova in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. The exploded star was the blue supergiant Sanduleak (Sk) − 69o202, with a mass of 20 solar masses, and its explosion produced the supernova remnant SN 1987A. From that moment, SN 1987A was observed with

» Read more