Calendar

Nov
7
mer
A novel method for component separation for extended sources in X-ray astronomy. Fabio Acero (CEA Saclay)
Nov 7@12:00–13:00
Supernova remnants (and extended sources in general), are composed of a variety of components from different origins such as the shocked medium, the shocked ejecta or the accelerated electrons. Each component has a spectral signature (bremsstrahlung, emission lines, synchrotron, etc) and a spatial distribution that are projected along the line of sight and the perceived signal is a combination of these components. Spectro-imaging instruments  such as Chandra or XMM-Newton provide a 2D-1D view (X, Y, E) of extended sources. This is both an opportunity and a non-trivial challenge to disentangle the spatial distribution of the spectral components at stake. Whether it is to map the spatial distribution of heavy elements or the plasma properties, current analysis techniques (e.g. Voronoi tiling) treat each region independently and the disentangling process only relies on the spectral signature of the components.
With the current deep archival observations and in preparation for the next generation of telescopes, we need to operate a paradigm shift in the way we analyse X-ray data by drawing from the most advanced signal processing techniques to capture the wealth of information contained in those observations.
Here we propose to apply to X-ray astronomy blind source separation algorithms developed in cosmology to separate the CMB map from the foregrounds in the Planck data. This method exploits both the spectral and spatial signatures of the components yielding more discriminative power to disentangle the different physical components. We will present benchmarks of the methods using toy models and show preliminary results on the Chandra CasA dataset.
Nov
28
mer
La D&D nella comunicazione dell’INAF, Caterina Boccato (INAF)
Nov 28@11:30–13:00

In questo breve incontro, Caterina Boccato nelle veci del responsabile nazionale della didattica e divulgazione, Stefano Sandrelli, presenta la Struttura per la Comunicazione della Presidenza con particolare riguardo alla didattica e alla divulgazione (D&D).
Il seminario sara` un’importante occasione di incontro per illustrare ai ricercatori INAF in che modo questa struttura può essere loro utile e che cosa la struttura si aspetta da parte dei ricercatori. A tal fine ne racconterà la strategia e gli strumenti adottati con una panoramica di quanto è stato fatto nel 2017 e nel 2018, mettendo in evidenza aspetti, efficaci e non, delle attività svolte. Per finire, uno sguardo al programma futuro.

Dic
11
mar
Ricevimento studenti – Argiroffi
Dic 11@15:00–17:00
Dic
13
gio
Evento DonnaDonna Onlus
Dic 13 giorno intero
Dic
14
ven
The role of cosmic rays on physical and chemical processes of the interstellar medium, Marco Padovani (INAF-Osservatorio Astrofisico di Arcetri)
Dic 14@15:00–16:30

The study of the interaction of cosmic rays with the interstellar matter is a multi-disciplinary investigation that involves the analysis of several physical and chemical processes: ionisation of atomic and molecular hydrogen, energy loss by elastic and inelastic collisions, energy deposition by primary and secondary electrons, gamma-ray production by pion decay, the production of light elements by spallation reactions, and much more. Cosmic-ray ionisation activates the rich chemistry of dense molecular clouds and determines the degree of coupling of the gas with the local magnetic field, which in turn controls the collapse timescale and the star-formation efficiency of a molecular cloud. In recent years a wealth of observations from the ground and from space has provided information and constraints that still need to be incorporated in a consistent global theoretical framework. My goal is to use the results of chemical models and state-of-the-art numerical simulations supplemented by dedicated observations to provide a unifying interpretation of the data with a model of cosmic-ray propagation specifically developed to make predictions that can be tested against the observations. Finally, I will talk about my most recent study: a mechanism able to accelerate local thermal particles in protostars that can be used to explain the high ionisation rate as well as the synchrotron emission observed towards protostellar sources.

Dic
18
mar
Visita Osservatorio International School Palermo
Dic 18@10:00–13:00
Predicting the onset of flux-rope ejections, Paolo Pagano (University of St Andrews, UK)
Dic 18@15:00–16:00

The accurate and timely prediction of solar eruptions is important for many space weather prediction tools and the Solar Orbiter mission. The aim of this study is to propose a new technique for the automated prediction of magnetic flux rope ejections in data driven NLFFF simulations hours in advance. We use a data-driven NLFFF model to describe the evolution of the 3D magnetic field of 8 active regions: 5 that produced an eruption and 3 where no eruption was observed. From the 3D magnetic field configuration, we determine a possible proxy for the loss of equilibrium of the magnetic flux rope based on the Lorentz force. Such proxy is significantly higher for the simulations of the eruptive active regions. For some cases, using a subset of the observed magnetograms, we ran a series of predictive simulations to test whether the time evolution of the proxy project forward in time can be used to predict the eruptions. We find that the identified proxy is useful in anticipating the magnetic flux rope ejection and that a meaningful prediction can be made up to 10 hours in advance. Although a number of issues need to be addressed for a fully operational application, this study presents an interesting solution for the prediction of CME onsets and future studies will address how to generalise the model such that it can be used.

Dic
20
gio
Ricevimento studenti – Argiroffi
Dic 20@15:00–17:00
Gen
4
ven
Ricevimento studenti – Argiroffi
Gen 4@10:00–12:00
Gen
10
gio
Ricevimento studenti Marco Miceli
Gen 10@10:00–12:00