Non thermal emission and cosmic rays in the supernova remnants SN1006. The paper: “”Hadronic particle acceleration in the supernova remnant SN 1006 as traced by Fermi-LAT observations” of M. Lemoine-Goumard (University of Bordeaux) appeared on A&A

Supernova remnants serve as unique laboratories to understand the complex processes occurring during a supernova explosion and to investigate the internal structure of massive stars just before their explosive demise. Additionally, the study of these remnants is driven by their crucial role in accelerating cosmic rays, which are particles with extremely high energies. In 1949, Enrico Fermi laid the groundwork for

» Read more

Superfast fragments and X-ray emission in the supernova remnant SN 1006. The study: “Indication of a fast ejecta fragment in the atomic cloud interacting with the southwestern limb of SN 1006” of R. Giuffrida (UNIPA/INAF) appeared on A&A

Supernova remnants, which are nebulae produced by explosion of supernovae and undergoing rapid expansion, typically serve as intense sources of high-energy radiation, particularly in the form of X-ray emissions. This radiation can be of two different types: thermal and non-thermal. Thermal radiation is emitted by dense material and is contingent upon the temperature of the emitting gas. To emit X-rays,

» Read more

Supernova remnants as particle accelerators. The study: “The supernova remnant SN 1006 as a Galactic particle accelerator” of R. Giuffrida (UniPA/INAF-OAPA) recently appeared on Nature Communication

Our planet is constantly bombarded by energetic particles (mainly protons) called “cosmic rays“. The study of cosmic rays is a leading science topic given its importance in several fields, such as the study of the effects on instrumentation and astronauts in space, where the natural protection against these particles provided by the magnetic field of Earth is low or null.

» Read more