Calendar

Lug
4
mer
Lezioni FSE-Micela
Lug 4@9:30–12:30
Lug
5
gio
Lezioni FSE-Micela
Lug 5@10:30–13:30
Lug
12
gio
“First X-ray detection of plasma motions in a stellar flare and in the associated CME”, Costanza Argiroffi (Dip. di Fisica & Chimica, Universita` di Palermo)
Lug 12@15:00–16:00

The comprehension of magnetically-related phenomena occurring in stellar atmospheres is one of the long-standing issues of astrophysics. The solar corona has always been the starting point to understand coronal physics, because the high spatial structuring of coronal plasmas complicate stellar observations. Stars however show activity levels up to 10^4 times higher than the Sun, and it is not clear how the different magnetic phenomena scale with the activity level. Therefore, direct observations of the different magnetic phenomena in active stars are crucial. However, many of them, among which are coronal mass ejections (CME), remain observationally unexplored. By performing time-resolved X-ray spectroscopy of a stellar flare, we present here the direct and unambiguous evidence of upward and downward motions of plasma within the flaring loop, and, most notably, also of the subsequent CME. The observed motions within the flaring loop neatly agree with hydrodynamic (HD) model predictions, indicating that the standard flare model holds also for flares 10^4 times more energetic than the most intense solar ones. This first direct and clear observation of a stellar CME allows us to infer its mass and kinetic energy. These findings provide crucial clues in the extrapolation of the solar case to higher activity levels, indicating that, in active stars, the kinetic energy loss due to mass expulsion appears considerably less effective.

Set
17
lun
Presentazione portale presenze
Set 17@11:30–12:30
Ott
2
mar
Lezioni FSE-Collura
Ott 2@9:00–13:00
Ott
3
mer
Lezioni FSE-Collura
Ott 3@9:00–13:00
Ott
11
gio
Ripetizione Tesi: Antonio Tutone, Luca La Mantia
Ott 11@15:00–17:00

“3D MHD simulations from the onset of the supernova to the development of the full-fledged remnant”

Antonio Tutone

The aim of this thesis is to bridge the gap between Supernovae (SNe) and their remnants (SNRs) by investigating how the remnants keep memory of the physical and chemical properties of the stellar progenitors and of the anisotropies of the explosions. I performed three-dimensional magneto-hydrodynamical simulations starting soon after the SN event and following the interaction of the SN ejecta with the circumstellar medium (consisting in the wind of the stellar progenitor), obtaining the physical scenario of a SNR. I investigated how the ejecta distribution of two different progenitors can affect the matter mixing of heavy elements in the remnant from the onset of the SN to 500 years. An 16M-ejecta blue supergiant (BSG) progenitor and a 19M-ejecta red supergiant (RSG) progenitor are investigated. Both spherical and aspherical explosions are investigated. I found that the SNR keeps memory both of the physical and chemical properties of the stellar progenitor and of the anisotropies of the explosion.

 

“Esplosioni di Supernovae e loro interazione con il mezzo circostante”

Luca La Mantia

Una Supernova è l’esplosione di una stella alla fine della sua evoluzione che genera, fra l’altro, un ammasso eterogeneo di gas e polveri detto Supernova remnant. A causa dell’esplosione si forma un’onda d’urto o shock che investe il materiale circumstellare e, riscaldandolo, ne fa un plasma con temperature che possono raggiungere alcuni miliardi di Kelvin. L’obiettivo della seguente tesi è studiare l’interazione del plasma con il mezzo circumstellare del Supernova remnant IC443 attraverso una semplice simulazione numerica magneto-idrodinamica del remnant. Poiché, tramite le osservazioni, si è visto che IC443 interagisce con una nube atomica a Nord-Est e con una nube toroidale molecolare a Nord-Ovest e a Sud-Est,  ho analizzato l’interazione del plasma shockato con le nubi al variare della densità di particelle delle stesse. Inoltre ho confrontato le varie simulazioni tra loro e ho studiato il comportamento del campo magnetico. Le simulazioni mostrano come la variazione della densità cambi la morfologia del remnant. Confrontando le simulazioni con le immagini del remnant ho potuto concludere anche che le nubi emettono fortemente in X e che la nube toroidale non emette in ottico.

Ott
16
mar
Lezioni FSE-Collura
Ott 16@9:00–13:00
Ott
29
lun
Presentazione D. Randazzo biblioteca Oapa a studenti I anno restauro cartaceo
Ott 29@15:00
Nov
7
mer
A novel method for component separation for extended sources in X-ray astronomy. Fabio Acero (CEA Saclay)
Nov 7@12:00–13:00
Supernova remnants (and extended sources in general), are composed of a variety of components from different origins such as the shocked medium, the shocked ejecta or the accelerated electrons. Each component has a spectral signature (bremsstrahlung, emission lines, synchrotron, etc) and a spatial distribution that are projected along the line of sight and the perceived signal is a combination of these components. Spectro-imaging instruments  such as Chandra or XMM-Newton provide a 2D-1D view (X, Y, E) of extended sources. This is both an opportunity and a non-trivial challenge to disentangle the spatial distribution of the spectral components at stake. Whether it is to map the spatial distribution of heavy elements or the plasma properties, current analysis techniques (e.g. Voronoi tiling) treat each region independently and the disentangling process only relies on the spectral signature of the components.
With the current deep archival observations and in preparation for the next generation of telescopes, we need to operate a paradigm shift in the way we analyse X-ray data by drawing from the most advanced signal processing techniques to capture the wealth of information contained in those observations.
Here we propose to apply to X-ray astronomy blind source separation algorithms developed in cosmology to separate the CMB map from the foregrounds in the Planck data. This method exploits both the spectral and spatial signatures of the components yielding more discriminative power to disentangle the different physical components. We will present benchmarks of the methods using toy models and show preliminary results on the Chandra CasA dataset.