Calendar

Mar
23
Thu
VideoConf L6/2000 @ Aula virtuale GARR/VCONF N.46
Mar 23 @ 10:00 – 13:30
Sorry, but you do not have permission to view this content.
Apr
19
Wed
Consiglio di Struttura n. 1/2017
Apr 19 @ 11:00 – 13:00
Sorry, but you do not have permission to view this content.
Apr
20
Thu
VideoConf L6/2000 – parte II @ Aula virtuale GARR/VCONF N.46
Apr 20 @ 10:00 – 13:30
Sorry, but you do not have permission to view this content.
Sep
1
Fri
VideoConf scuola INAF-SAIt Padova @ Aula virtuale GARR/VCONF
Sep 1 @ 10:45 – 13:15
Sorry, but you do not have permission to view this content.
Sep
17
Mon
Consiglio di Struttura
Sep 17 @ 11:30 – 13:30
Jan
21
Mon
Seminario esopianeti – Darius Modirrousta-Galian
Jan 21 @ 11:30 – 13:00

Very Hot Super-Earths with an Atmosphere: A Model Explaining Their Paradoxical Existence

The aim of this research is to constrain the interior structures and evolutions of hot super-Earths, particularly that of 55 Cancri e. Herewith, we propose an alternative model for the paradoxical nature of small, hot super-Earths with atmospheres. Our model does not require these bodies to contain large quantities of ices in order to account for their low densities, which has been a subject of dispute considering their high surface temperatures and the potentially strong internal heat processes such as tidal flexing or radiogenic heating. The first aspect of our research involved calculating the total H2 reservoir in 55 Cancri e which is ~ 2×1023 kg (0.04 M). We then encountered a theoretical enigma since the UV and X-Ray induced mass loss should have been strong enough to evaporate the atmosphere billions of years ago, which is inconsistent with astronomical data showing a currently plentiful atmosphere. This issue can be completely avoided by showing that for a tidally locked setup, the mass loss rates on the night-side are negligible thus allowing the planet to maintain a H2-rich atmosphere above half its surface. In the case of 55 Cancri e, it became tidally locked approximately 50 ± 250 Myrs after it formed implying that from that moment onwards the radius and mass of the body changed negligibly. Prior to this time mass loss rates were very strong and approximately homogeneous which when modelled, showed that 55 Cancri e was born as a Neptunian-or-Jovian-type exoplanet. Finally, we propose that the bimodal distribution in exoplanet radii may be the result of two different evolutionary paths; one where a super-Earth loses all of its atmosphere before it becomes tidally locked (resulting in the peak at ~ 1.3 R), and the other when super-Earths become tidally locked before losing their atmosphere allowing them to maintain it (resulting in the other peak at ~ 2.4 R).

Nov
23
Wed
Meeting THE StellaR PAth
Nov 23 @ 14:30 – Nov 25 @ 14:45