Metallicity trends in evolved stars
Unraveling the planet metallicity correlation

J. Maldonado, E. Villaver, C. Eiroa

jesus.maldonado@uam.es

IWSSL 2013, October 17
Outline

1. Introduction
2. Observations and analysis
3. Planet metallicity correlation in evolved stars
4. Summary
1 Introduction

2 Observations and analysis

3 Planet metallicity correlation in evolved stars

4 Summary
Astrophysical context

After 20 years of the first exoplanet discoveries ...

- Properties of planet hosts still not well known
- Current knowledge mainly based on observations of MS stars

Planets around evolved stars: new questions

- Disentangling the gas-giant planet-[Fe/H] correlation
 - Previous results based on small or inhomogeneous samples
 - Primordial origin vs late-stage accretion of material
- Different planetary properties?

To achieve a full picture of planetary evolution from MS stars to the latest stages of the stellar evolution
Outline

1. Introduction
2. Observations and analysis
3. Planet metallicity correlation in evolved stars
4. Summary
142 evolved stars (70 planet hosts)

Metallicity trends in evolved stars

Spectroscopic observations

<table>
<thead>
<tr>
<th>Instrument</th>
<th>R</th>
<th>λλ (nm)</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIES</td>
<td>67000</td>
<td>364-736</td>
<td>200</td>
</tr>
<tr>
<td>NOT (2.6 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HERMES</td>
<td>87000</td>
<td>380-900</td>
<td>150</td>
</tr>
<tr>
<td>MERCATOR (1.2 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic stellar properties and abundances

Stellar parameters

- Code *TGVIT* (Takeda et al. 2005)
- Iron ionization and excitation conditions, match of the curve of growth
- 302 Fe I and 28 Fe II lines
- EWs measurements using *ARES* (Sousa et al. 2007)
- ATLAS9, plane-parallel, LTE model atmospheres (Kurucz 1993)
- Statistical uncertainties from the converged solution

Elemental abundances

- Na, Mg, Si, Ca, Ti, Cr, Co, Ni, Zn
- *WIDTH9* program + ATLAS9 model atomospheres
- Line list mainly from Neves et al. (2009)
- Propagation of the errors in the stellar parameters + line-to-line scatter errors
Outline

1. Introduction
2. Observations and analysis
3. Planet metallicity correlation in evolved stars
4. Summary
The metal-rich nature of planet hosts tends to disappear as the star evolves.

Results

- Giant stars with planets similar to giants without planets
- Subgiants with planets shifted towards \([\text{Fe/H}]\) with respect to subgiants without planets
- Subgiants without planets behave as giants (in general)
- Subgiants with planets similar to main sequence with planets

Implications

- Subgiants: Core-accretion models
- Giants: hard to explain
Stellar mass: the parameter that changes the most between giants and MS samples

- **Giant stars with**: \(M_\star \leq 1.5 M_\odot \)
 - Giants with/without planets mixed, covering the whole range of \([\text{Fe/H}]\)
 - Similar abundance patterns in all the elements
Giant stars with: $M_\star > 1.5 \, M_\odot$

- Lower scatter in the [Fe/H] axis, giants with planets on the metal-rich part of the plot
- Differences in some elements, Na, Co, Ni

Can massive proto-planetary discs explain the observed trends?

- Massive stars likely to harbour more massive proto-planetary discs
- Giant planet formation can occur in low-[Fe/H] but high-mass proto-planetary discs (Alibert et al. 2001; Mordasini et al., 2012)

× Giant stars with planets in the mass domain $M_\star < 1.5 \, M_\odot$ do not have more massive proto-planetary discs
Can the metallicity signature be erased as the star evolves?

- Metal-rich signature seen in planet hosts due to accretion of gas depleted material (Lind et al. 1996; Gonzalez 1997)

Difficulties

- Subgiants with planets should show lower metallicities than main-sequence with planets but we do not find this
- Why convection should play a role erasing the metal signature for giants only in the mass domain $M_\star \leq 1.5 M_\odot$?

$[\text{Fe/H}]$-Radius plane

- No obvious trend found

Giants $M_\star \leq 1.5 M_\odot$; Giants $M_\star > 1.5 M_\odot$; Subgiants; Late-MS
Is our sample biased?

No bias identified in distance or kinematics

[Fe/H] as a function of the age

- Giants $M_\star > 1.5 \, M_\odot$ are systematically located in the left part of the plot (younger ages)
- All the other samples tend to be in the right part of the plot (older ages)

× No galactic radial mixing

Colour cut-off in exoplanet searches

Are high-metal giant stars left out the the samples? (Mortier et al. 2013)

Giants $M_\star \leq 1.5 \, M_\odot$; Giants $M_\star > 1.5 \, M_\odot$; Subgiants; Late-MS
Outline

1 Introduction

2 Observations and analysis

3 Planet metallicity correlation in evolved stars

4 Summary
Conclusions
High-resolution spectra of 142 evolved stars

1 Spectroscopic analysis: stellar parameters, abundances, kinematics, and stellar age

2 [Fe/H] vs presence/absence of planets
 - Subgiants and high-mass giants show planet-metallicity correlation
 - Giants with $M_* \leq 1.5 M_\odot$ planet hosts do not show metal enrichment

3 Implications
 - Core-accretion? Low-mass giants do not have more massive proto-planetary discs
 - Pollution? Why only in low-mass giants?
 - Possible biases?
 - No in age, distance, or kinematics
 - Colour cut-off in the samples

Ref: Maldonado et al. 2013, A&A 554, A84
Other chemical signatures I

Late-stage accretion of material: Overabundance of refractory elements in MS which disappears as the star evolves

Giants with: $M_\star < 1.5 \, M_\odot$

Similar abundance patterns in all the elements

<table>
<thead>
<tr>
<th>Element</th>
<th>p-value</th>
<th>$[X/Fe]$</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>0.96</td>
<td></td>
<td>0.71</td>
</tr>
<tr>
<td>Mg</td>
<td>0.39</td>
<td>Cr I</td>
<td>0.86</td>
</tr>
<tr>
<td>Al</td>
<td>0.42</td>
<td>Cr II</td>
<td>0.18</td>
</tr>
<tr>
<td>Si</td>
<td>0.04</td>
<td>Mn</td>
<td>0.26</td>
</tr>
<tr>
<td>Ca</td>
<td>0.90</td>
<td>Co</td>
<td>0.87</td>
</tr>
<tr>
<td>Sc</td>
<td>0.75</td>
<td>Ni</td>
<td>0.96</td>
</tr>
<tr>
<td>Ti I</td>
<td>0.17</td>
<td>Zn</td>
<td>0.71</td>
</tr>
<tr>
<td>Ti II</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Late-stage accretion of material: Overabundance of refractory elements in MS which disappears as the star evolves

<table>
<thead>
<tr>
<th>[X/Fe]</th>
<th>p-value</th>
<th>[X/Fe]</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>0.01</td>
<td>V</td>
<td>0.04</td>
</tr>
<tr>
<td>Mg</td>
<td>0.73</td>
<td>Cr I</td>
<td>0.98</td>
</tr>
<tr>
<td>Al</td>
<td>0.95</td>
<td>Cr II</td>
<td>0.24</td>
</tr>
<tr>
<td>Si</td>
<td>0.66</td>
<td>Mn</td>
<td>0.84</td>
</tr>
<tr>
<td>Ca</td>
<td>0.06</td>
<td>Co</td>
<td>0.02</td>
</tr>
<tr>
<td>Sc</td>
<td>0.11</td>
<td>Ni</td>
<td>0.01</td>
</tr>
<tr>
<td>Ti I</td>
<td>0.59</td>
<td>Zn</td>
<td>0.49</td>
</tr>
<tr>
<td>Ti II</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trends with the planetary properties

[Graphs showing metallicity trends with semimajor axis (AU) and $M_p sini (M_\odot)$]