Introduction	Observations and analysis	Abundance trends	Discussion

Summary

Searching for signatures of planet formation in stars with circumstellar debris discs

Jesús Maldonado

INAF - Osservatorio Astronomico di Palermo

jmaldonado@astropa.inaf.it

Connecting Stellar Abundances and Planet Habitability @ Pathways II

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		0000	o

Collaborators:

- C. Eiroa (Universidad Autónoma de Madrid)
- E. Villaver (Universidad Autónoma de Madrid)
- B. Montesinos (Department of Astrophysics, Centro de Astrobiología (CAB, CSIC-INTA))
- A. Mora (ESA-ESAC Gaia SOC)

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		0000	o
Outline				

2 Observations and analysis

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
O	o		0000	o
Outline				

- 2 Observations and analysis
- 3 Abundance trends
- 4 Discussion

Introduction •	Observations and analysis o	Abundance trends	Discussion 0000	Summary o
Debris and planets				
Correlated	d phenomena?			

Planetesimals are the "building blocks" of planets \Rightarrow Do their host stars have similar properties?

Discs

- Incidence no higher around planet-host stars
- No correlation with stellar properties

(e.g. Bryden et al. 2009, Kóspál et al. 2009)

Planets

- $\bullet~$ Low-mass planets $M_p < 30~M_\oplus$ do not follow this trend
- Puzzling results in evolved stars hosting planets (e.g. Maldonado et al. 2013)

Low-mass planets: a major challenge

- m lacksquare ~ 55% more SWDPs w.r.t. previous works
- Debris discs and low-mass planets: "Good neighbours?" (e.g. Maldonado et al. 2012, Wyatt et al. 2012, Marshall et al. 2014)
- "Fingerprints" of terrestrial planet formation in the stellar photospheric abundances? (e.g. Meléndez et al. 2009; Ramírez et al. 2009, 2010, 2014)

Introduction o	Observations and analysis $^{\circ}$	Abundance trends	Discussion 0000	Summary o
Outline				

- **Observations and analysis**
 - 3 Abundance trends
- Discussion

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
		0000	0000	
Notation/Observations				

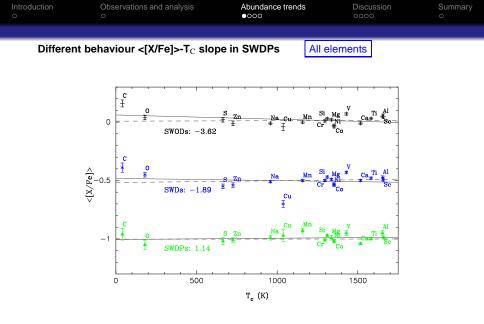
In this study:

Chemical abundances of four samples of solar-like stars

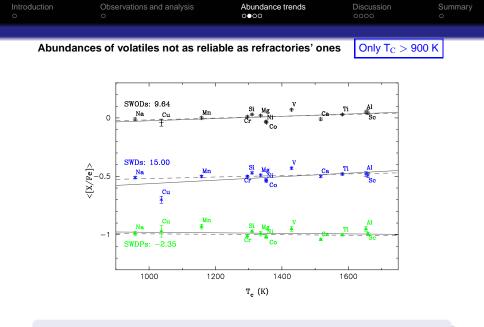
- Stars with known debris discs (SWDs) IRAS, ISO, Spitzer, Herschel data (68 stars)
- Stars with known debris discs and planets (SWDPs) ~ 55% more SWDPs w.r.t. previous works (31 stars)
- Stars with known planets (SWPs) Stars hosting gas-giant/low-mass planets (32 stars)
- Comparison sample (SWODs)

No IR-excess found at Spitzer/Herschel's λ s (119)

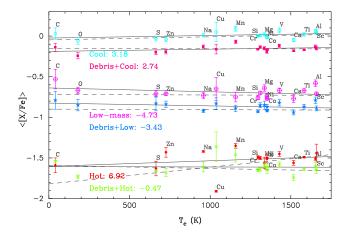
Spectroscopic Analysis


- Stellar parameters, code TGVIT (Takeda et al. 2005) Iron ionisation and excitation conditions, match of the curve of growth
- MOOG code (Sneden 1973) + ATLAS9 models C, O, Na, Mg, AI, Si, S, Ca, Sc, Ti I, Ti II, V, Cr I, Cr II, Mn, Co, Ni, Cu, Zn

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		0000	o
Outline				

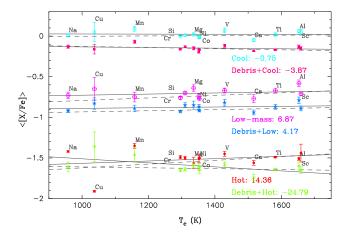


- Observations and analysis
- 3 Abundance trends
- Discussion


SWDs/SWODs < slopes; SWDPs > slopes

 Slope change their signs, but still there is a difference in SWDPs wrt SWDs/SWODs

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
		0000		


Comparison with planet hots (all elements)

- SWDPs behave as stars with planets
- Differences between stars with cool and low-mass planets

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
		0000		

Comparison with planet hots (only refractories)

- SWDPs behave as stars with planets
- Differences between stars with cool and low-mass planets

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
O	o		0000	o
Outline				

- 2 Observations and analysis
- 3 Abundance trends

Introduction o	Observations and analysis o	Abundance trends	Discussion	Summary o

Previous analysis:

- Meléndez et al. 2009: Deficit of refractory in the Sun wrt other solar twins. Related to the formation of low-mass planets
- González Hernández et al. 2012, 2013; Adibekyan et al. 2014: Galactic chemical evolution effects age/Galactic birth place explanation

Introduction o	Observations and analysis o	Abundance trends	Discussion	Summary o

Previous analysis:

- Meléndez et al. 2009: Deficit of refractory in the Sun wrt other solar twins. Related to the formation of low-mass planets
- González Hernández et al. 2012, 2013; Adibekyan et al. 2014: Galactic chemical evolution effects age/Galactic birth place explanation

In this work:

- Similar behaviour SWDs/SWODs
- 2 Similar behaviour SWDPs/SWPs
- 3 No differences in stars with low-mass planets (wrt SWODs/SWDs)
- Different behaviour in stars with cool-Jupiters
- Positive slopes in stars with hot-Jupiters

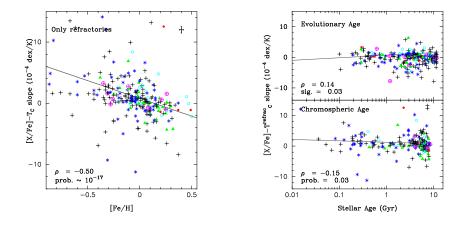
Introduction o	Observations and analysis o	Abundance trends	Discussion	Summary o

Previous analysis:

- Meléndez et al. 2009: Deficit of refractory in the Sun wrt other solar twins. Related to the formation of low-mass planets
- González Hernández et al. 2012, 2013; Adibekyan et al. 2014: Galactic chemical evolution effects age/Galactic birth place explanation

In this work:

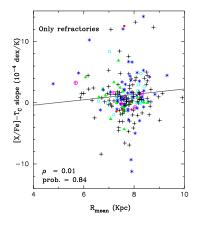
- Similar behaviour SWDs/SWODs
- 2 Similar behaviour SWDPs/SWPs
- 3 No differences in stars with low-mass planets (wrt SWODs/SWDs)
- Different behaviour in stars with cool-Jupiters
- Positive slopes in stars with hot-Jupiters


Key questions:

- Might the <[X/Fe]>-T_C trends be influenced by GCE effects?
- 2 Do the <[X/Fe]>-T_C trends fit in the ME09 hypothesis?

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		••••	o
Might the <[X/Fe]>-T _C	trends be influenced by GCE effects?			

Abundance patterns may be affected by GCE effects


$T_{\rm C}$ slope vs. [Fe/H], age, and $R_{\rm mean}$

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		0000	o
Might the <[X/Fe]>-T _C trends be influenced by GCE effects?				

Abundance patterns may be affected by GCE effects

$T_{\rm C}$ slope vs. [Fe/H], age, and $R_{\rm mean}$

[Fe/H]	Moderate, significant
Age	Weak, but significant
R_{mean}	Not clear correlation

GCE corrections

[X/H] vs. [Fe/H] linear fits

 Still correlations with the chromospheric age and the stellar radius remain

 Might this correction "delete" possible chemical depletions?

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		○○●○	o
Do the <[X/Fe]>-T _C	trends fit in the ME09 hypothesis?			

- Similar behaviour SWDs/SWODs
- Similar behaviour SWDPs/SWPs
- No differences in stars with low-mass planets (wrt SWODs/SWDs)

Introduction O	Observations and analysis o	Abundance trends	Discussion	Summary o
Do the <[X/Fe]>-T	$_{ m C}$ trends fit in the ME09 hypothesis?			

Similar behaviour SWDs/SWODs

- Similar behaviour SWDPs/SWPs
- 3 No differences in stars with low-mass planets (wrt SWODs/SWDs)
- Planet: key factor in revealing the chemical behaviour of the star Consistent with core-accretion model of planet formation.
- Correlation between dust and low-mass planets?
 Significant fraction of low-mass hosts among the SWDPs.
 In agreement with recent results (e.g. Wyatt et al. 2012, Marshall et al. 2014)

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		○○○●	o
Do the <[X/Fe]>-T _C tre	ends fit in the ME09 hypothesis?			

Different behaviour in stars with cool-Jupiters

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		○○○●	o
Do the <[X/Fe]>-T _C tre	ends fit in the ME09 hypothesis?			

Different behaviour in stars with cool-Jupiters

• Not in agreement with ME09

Low-mass planet hosts: only < slopes for all elements, but similar to SWDs/SWODs **Cool-Jupiter hosts:** differences in T_C^{all} and T_C^{ref} ; < slopes in T_C^{ref} analysis

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		○○○●	o
Do the <[X/Fe]>-T _C tre	ends fit in the ME09 hypothesis?			

Different behaviour in stars with cool-Jupiters

Not in agreement with ME09

Low-mass planet hosts: only < slopes for all elements, but similar to SWDs/SWODs **Cool-Jupiter hosts:** differences in T_C^{all} and T_C^{ref} ; < slopes in T_C^{ref} analysis

Positive slopes in stars with hot-Jupiters

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		○○○●	o
Do the <[X/Fe]>-T _C tre	ends fit in the ME09 hypothesis?			

Different behaviour in stars with cool-Jupiters

Not in agreement with ME09

Low-mass planet hosts: only < slopes for all elements, but similar to SWDs/SWODs **Cool-Jupiter hosts:** differences in T_C^{all} and T_C^{ref} ; < slopes in T_C^{ref} analysis

Positive slopes in stars with hot-Jupiters

 Caution, small sample size! Also SWDs/SWODs show > slopes in T^{ref}_C Indication of non low-mass planets?

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
o	o		0000	o
Outline				

Introduction

- 2 Observations and analysis
- 3 Abundance trends

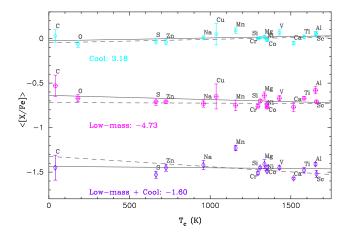
4 Discussion

Introduction o	Observations and analysis o	Abundance trends	Discussion 0000	Summary ●			
Ref: Maldonado et al. 2015, A&A, 579, A20							
Summary							

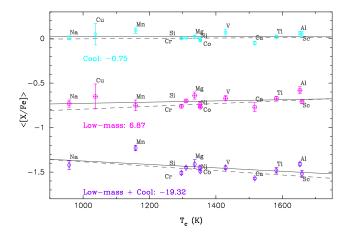
Detailed chemical analysis of SWDs and SWDPs

- No differences SWDs/SWODs
- SWDPs driven by the type of planet
 - In agreement with core-accretion models
 - Correlation debris disc/low-mass planets?
 - Lack correlation debris discs/giant planets?

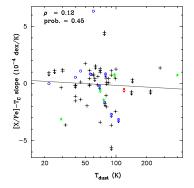
• Tentative [X/Fe]-T_C trends in SWPs

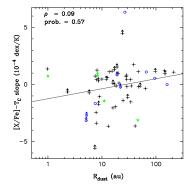

- Different behaviour in stars with cool-planets
- Similar behaviour low-mass planets hosts / non-planets samples
- Stars with hot Jupiters: higher [Fe/H], positive slopes?

Chemical depletions/Planet formation?

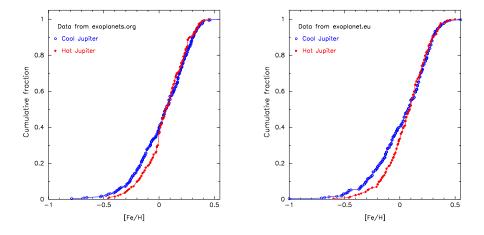

- Low statistical significances
- Correlation T_C-[Fe/H]
- After GCE corrections: still correlations with age, radius

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
		0000	0000	


Introduction	Observations and analysis	Abundance trends	Discussion	Summary
		0000	0000	



Introduction	Observations and analysis	Abundance trends	Discussion	Summary
		0000	0000	



Introduction	Observations and analysis	Abundance trends	Discussion	Summary
O	o		0000	o

Introduction	Observations and analysis	Abundance trends	Discussion	Summary

