Introduction 00 Observations and analysis

Abundance trends

Discussion

Summary o

Searching for signatures of planet formation in stars with circumstellar debris discs

Jesús Maldonado

INAF - Osservatorio Astronomico di Palermo

jmaldonado@astropa.inaf.it

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
00	000	000000	000000	

Collaborators:

- C. Eiroa (Universidad Autónoma de Madrid)
- E. Villaver (Universidad Autónoma de Madrid)
- B. Montesinos (Department of Astrophysics, Centro de Astrobiología (CAB, CSIC-INTA))
- A. Mora (ESA-ESAC Gaia SOC)

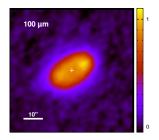
Introduction	Observations and analysis	Abundance trends	Discussion 000000	Summary o
Outline				

2 Observations and analysis

Introduction	Observations and analysis	Abundance trends	Discussion 000000	Summary o
Outline				

- 2 Observations and analysis
- 3 Abundance trends
- 4 Discussion

Introduction •o	Observations and analysis	Abundance trends	Discussion 000000	Summary o
Debris and planets				
Correlated phenomena?				


Debris discs: Signatures of planetesimals systems Continuously produced by collisions of such solid bodies

Frequency around solar-type stars

- Spitzer: $\sim 16\%$ (e.g. Trilling et al. 2008)
- Herschel: $\sim 20\%$ (DUNES sample)

Planets frequency

- > 50% planets of any mass, period up to 100 days
- 14% planets with $M_p > 50 M_{\oplus}$, period shorter than 10 years

Herschel view of the HD 207129 debris disc (Marshall et al. 2011)

(Mayor et al. 2011)

Correlated phenomena?					
Debris and planets					
Introduction	Observations and analysis	Abundance trends	Discussion 000000	Summary o	

Planetesimals are the "building blocks" of planets \Rightarrow Do their host stars have similar properties?

Discs

- Incidence no higher around planet-host stars
- No correlation with stellar properties

(e.g. Bryden et al. 2009, Kóspál et al. 2009)

Planets

- $\bullet~$ Low-mass planets $M_p < 30~M_\oplus$ do not follow this trend
- Puzzling results in evolved stars hosting planets (e.g. Maldonado et al. 2013)

Low-mass planets: a major challenge

- \sim 55% more SWDPs w.r.t. previous works
- Debris discs and low-mass planets: "Good neighbours?" (e.g. Maldonado et al. 2012, Wyatt et al. 2012, Marshall et al. 2014)
- "Fingerprints" of terrestrial planet formation in the stellar photospheric abundances? (e.g. Meléndez et al. 2009; Ramírez et al. 2009, 2010, 2014)

Introduction	Observations and analysis	Abundance trends	Discussion 000000	Summary o
Outline				

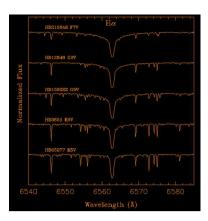
- **2** Observations and analysis
 - 3 Abundance trends

4 Discussion

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
00	●○○		000000	o
Notation				

In this study:

Chemical abundances of four samples of solar-like stars


- Stars with known debris discs (SWDs) IRAS, ISO, Spitzer, Herschel data (68 stars)
- Stars with known debris discs and planets (SWDPs) ~ 55% more SWDPs w.r.t. previous works (31 stars)
- Stars with known planets (SWPs) Stars hosting gas-giant/low-mass planets (32 stars)
- Comparison sample (SWODs) No IR-excess found at Spitzer/Herschel's λs (119)

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
	000	000000	000000	
Observations				

IRAF-echelle package

overscan, flat-fielding, scattered light, blazeshape removing, order extraction, wavelength calibration

Example of FOCES spectra in the ${\rm H}_{\alpha}$ region

(Maldonado et al. 2010)

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
	000			
Basic stellar properties and abundances				

Stellar parameters

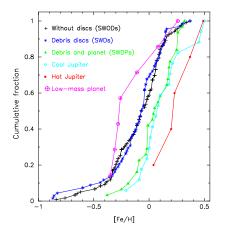
- Code TGVIT (Takeda et al. 2005)
- Iron ionisation and excitation conditions, match of the curve of growth
- 302 Fe I and 28 Fe II lines
- EWs measurements using ARES (Sousa et al. 2007)
- ATLAS9, plane-parallel, LTE (Kurucz 1993)
- Statistical uncertainties from the converged solution

Elemental abundances

- C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti I, Ti II, V, Cr I, Cr II, Mn, Co, Ni, Cu, Zn
- MOOG program + ATLAS9 model atmospheres
- HFS: V, C, Cu
- Oxygen: nLTE
- Line list mainly from Neves et al. 2009, Ramírez et al. 2014

Introduction	Observations and analysis	Abundance trends	Discussion 000000	Summary o
Outline				

- Observations and analysis
- 3 Abundance trends


4 Discussion

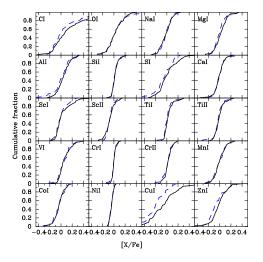
Introduction oo	Observations and analysis	Abundance trends	Discussion 000000	Summary o	
Comparing the metallicity distribution of all samples					

Transition towards higher [Fe/H]

 $\text{SWODs} \Rightarrow \text{SWPs}$

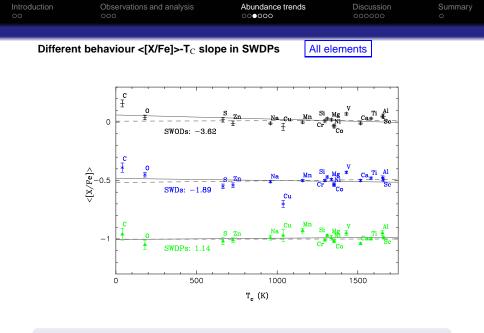
Results

- SWDs similar to SWODs
- SWDPs behave as SWPs (no matter the planet's mass)
- Hot-giant hosts tend to be more metal-rich than cool-giant hosts

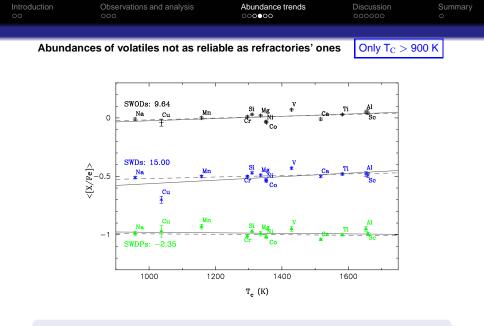

31 solar-like SWDPs:

- 47% multiplanet systems, 6 stars with low-mass planets
- 8 stars host at least one low mass planet
- 2/24 SWDPs hosting only gas giant planets, host "hot"-Jupiters (a < 0.1 AU)

Introduction	Observations and analysis	Abundance trends	Discussion	Summary		
		00000				

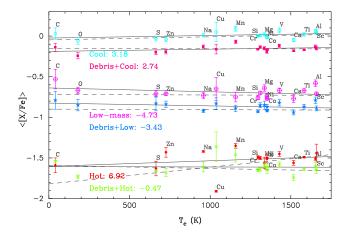

Other chemical signatures

No obvious differences SWDs/SWODs



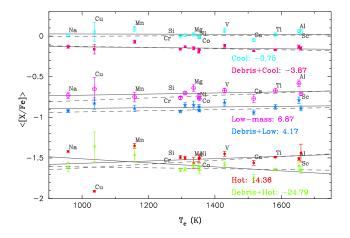
Kolmogorov-Smirnov probabilities

[X/Fe]	<i>p</i> -value	[X/Fe]	<i>p</i> -value
С	0.30	Ti	0.08
0	0.96	V	0.88
Na	0.82	Cr	0.56
Mg	0.10	Mn	0.91
Al	0.55	Co	0.83
Si	0.63	Ni	0.86
S	0.25	Cu	< 0.01
Ca	>0.99	Zn	0.04
Sc	0.80		

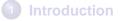

SWDs/SWODs < slopes; SWDPs > slopes

 Slope change their signs, but still there is a difference in SWDPs wrt SWDs/SWODs

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
		000000		


Comparison with planet hots (all elements)

- SWDPs behave as stars with planets
- Differences between stars with cool and low-mass planets


Introduction	Observations and analysis	Abundance trends	Discussion	Summary
		00000		

Comparison with planet hots (only refractories)

- SWDPs behave as stars with planets
- Differences between stars with cool and low-mass planets

Introduction 00	Observations and analysis	Abundance trends	Discussion	Summary o
Outline				

- 2 Observations and analysis
- 3 Abundance trends

Discussion

Introduction 00	Observations and analysis	Abundance trends	Discussion 000000	Summary o
Distri				

Previous analysis:

- Meléndez et al. 2009: Deficit of refractory in the Sun wrt other solar twins. Related to the formation of low-mass planets
- González Hernández et al. 2012, 2013; Adibekyan et al. 2014: Galactic chemical evolution effects age/Galactic birth place explanation

Introduction	Observations and analysis	Abundance trends	Discussion	Summary
		000000	000000	

Previous analysis:

- Meléndez et al. 2009: Deficit of refractory in the Sun wrt other solar twins. Related to the formation of low-mass planets
- González Hernández et al. 2012, 2013; Adibekyan et al. 2014: Galactic chemical evolution effects age/Galactic birth place explanation

In this work:

- Similar behaviour SWDs/SWODs
- 2 Similar behaviour SWDPs/SWPs
- 3 No differences in stars with low-mass planets (wrt SWODs/SWDs)
- Different behaviour in stars with cool-Jupiters
- Positive slopes in stars with hot-Jupiters

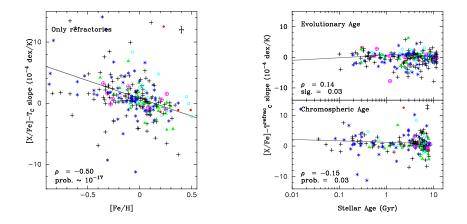
Introduction	Observations and analysis	Abundance trends	Discussion	Summary
00	000	000000	000000	

Previous analysis:

- Meléndez et al. 2009: Deficit of refractory in the Sun wrt other solar twins. Related to the formation of low-mass planets
- González Hernández et al. 2012, 2013; Adibekyan et al. 2014: Galactic chemical evolution effects age/Galactic birth place explanation

In this work:

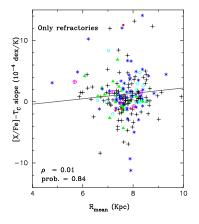
- Similar behaviour SWDs/SWODs
- 2 Similar behaviour SWDPs/SWPs
- 3 No differences in stars with low-mass planets (wrt SWODs/SWDs)
- Different behaviour in stars with cool-Jupiters
- Positive slopes in stars with hot-Jupiters


Key questions:

- Might the <[X/Fe]>-T_C trends be influenced by GCE effects?
- 2 Do the $\langle X/Fe \rangle$ Do the $\langle X/Fe \rangle$ Do the $\langle X/Fe \rangle$

Introduction	Observations and analysis	Abundance trends	Discussion	Summary	
		000000	00000		
Might the $\langle X/Fe \rangle - T_C$ trends be influenced by GCE effects?					

Abundance patterns may be affected by GCE effects

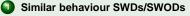

$T_{\rm C}$ slope vs. [Fe/H], age, and $R_{\rm mean}$

Introduction	Observations and analysis	Abundance trends	Discussion 00000	Summary o
Might the <[X/Fe]>	-T _C trends be influenced by GCE effects?	?		

Abundance patterns may be affected by GCE effects

$T_{\rm C}$ slope vs. [Fe/H], age, and $R_{\rm mean}$

[Fe/H]	Moderate, significant
Age	Weak, but significant
R _{mean}	Not clear correlation


GCE corrections

[X/H] vs. [Fe/H] linear fits

 Still correlations with the chromospheric age and the stellar radius remain

 Might this correction "delete" possible chemical depletions?

Introduction	Observations and analysis	Abundance trends	Discussion ○○●○○○	Summary o
Do the <[X/Fe]>-T _C tr	ends fit in the ME09 hypothesis?			

- Similar behaviour SWDPs/SWPs
- No differences in stars with low-mass planets (wrt SWODs/SWDs)

Introduction	Observations and analysis	Abundance trends	Discussion	Summary o
Do the <[X/Fe]>-T _C	trends fit in the ME09 hypothesis?			

Similar behaviour SWDs/SWODs

- Similar behaviour SWDPs/SWPs
- 3 No differences in stars with low-mass planets (wrt SWODs/SWDs)
- Planet: key factor in revealing the chemical behaviour of the star Consistent with core-accretion model of planet formation.
- Correlation between dust and low-mass planets?
 Significant fraction of low-mass hosts among the SWDPs.
 In agreement with recent results (e.g. Wyatt et al. 2012, Marshall et al. 2014)

Introduction 00	Observations and analysis	Abundance trends	Discussion	Summary o
Do the <[X/Fe]>-T _C tre	nds fit in the ME09 hypothesis?			

Different behaviour in stars with cool-Jupiters

Introduction 00	Observations and analysis	Abundance trends	Discussion	Summary o
Do the <[X/Fe]>-T _C tre	ends fit in the ME09 hypothesis?			

Different behaviour in stars with cool-Jupiters

• Not in agreement with ME09

Low-mass planet hosts: only < slopes for all elements, but similar to SWDs/SWODs **Cool-Jupiter hosts:** differences in T_C^{all} and T_C^{ref} ; < slopes in T_C^{ref} analysis

Introduction 00	Observations and analysis	Abundance trends	Discussion	Summary o
Do the <[X/Fe]>-T _C tre	ends fit in the ME09 hypothesis?			

- Different behaviour in stars with cool-Jupiters
- Not in agreement with ME09

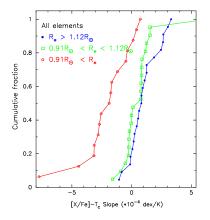
Low-mass planet hosts: only < slopes for all elements, but similar to SWDs/SWODs **Cool-Jupiter hosts:** differences in T_C^{all} and T_C^{ref} ; < slopes in T_C^{ref} analysis

Positive slopes in stars with hot-Jupiters

Introduction	Observations and analysis	Abundance trends	Discussion	Summary o
Do the <[X/Fe]>-T _C tre	ends fit in the ME09 hypothesis?			

Different behaviour in stars with cool-Jupiters

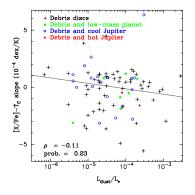
Not in agreement with ME09

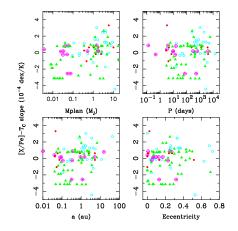

Low-mass planet hosts: only < slopes for all elements, but similar to SWDs/SWODs **Cool-Jupiter hosts:** differences in T_C^{all} and T_C^{ref} ; < slopes in T_C^{ref} analysis

Positive slopes in stars with hot-Jupiters

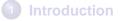
 Caution, small sample size! Also SWDs/SWODs show > slopes in T^{ref}_C Indication of non low-mass planets?

Introduction 00	Observations and analysis	Abundance trends	Discussion ○○○○●○	Summary o
Signatures of pollution				


[X/Fe]-T_C slope correlation: natural prediction of self-enrichment hypothesis



- R_{*}: proxy of the convective envelope size
 Early-type: ↑ R_{*}, ↓ CZ
 Late-type: ↓ R_{*}, ↑ CZ
- K-stars show larger negative slopes
 But, only in T^{all}_C analysis
 Against the pollution hypothesis


Introduction	Observations and analysis	Abundance trends	Discussion	Summary
			000000	
Trends with planets/dis	scs properties			

No apparent trends between disc/planet properties with [X/Fe]-T_C slope

Introduction 00	Observations and analysis	Abundance trends	Discussion 000000	Summary o
Outline				

- 2) Observations and analysis
- 3 Abundance trends

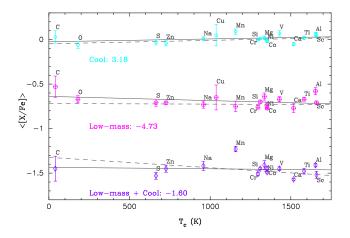
4 Discussion

Introduction 00	Observations and analysis	Abundance trends	Discussion 000000	Summary ●	
Ref: Maldonado et al. 2015, A&A, 579, A20					
Summary					

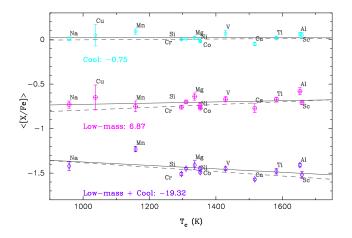
Detailed chemical analysis of SWDs and SWDPs

- No differences SWDs/SWODs
- SWDPs driven by the type of planet
 - In agreement with core-accretion models
 - Correlation debris disc/low-mass planets?
 - Lack correlation debris discs/giant planets?

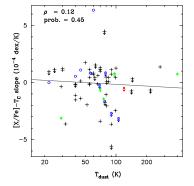
• Tentative [X/Fe]-T_C trends in SWPs

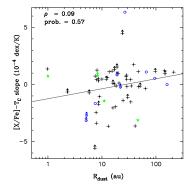

- Different behaviour in stars with cool-planets
- Similar behaviour low-mass planets hosts / non-planets samples
- Stars with hot Jupiters: higher [Fe/H], positive slopes?

Chemical depletions/Planet formation?

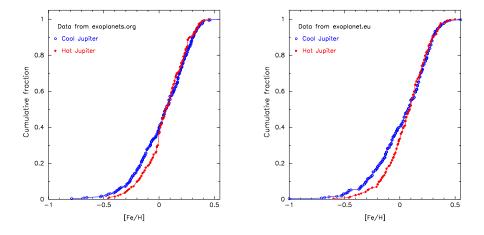

- Low statistical significances
- Correlation T_C-[Fe/H]
- After GCE corrections: still correlations with age, radius

Introduction	Observations and analysis	Abundance trends	Discussion	Summary


Introduction	Observations and analysis	Abundance trends	Discussion 000000	Summary o



Introduction	Observations and analysis	Abundance trends	Discussion	Summary



Introduction	Observations and analysis	Abundance trends	Discussion	Summary

Introduction	Observations and analysis	Abundance trends	Discussion 000000	Summary o

